پیش بینی مقاومت برشی خاک های غیراشباع با استفاده از سیستم استنتاج فازی-عصبی انطباقی(anfis)و شبکه های عصبی مصنوعی
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی صنعتی کرمان - دانشکده عمران
- author الهه مهنی روش
- adviser فضل الله سلطانی علی حیدری پناه سید مرتضی مرندی
- publication year 1391
abstract
بررسی مقاومت برشی خاک غیراشباع با استفاده از تجهیزات آزمایشگاهی نسبت به حالت اشباع آن، پیچیده تر،پرهزینه تر و زمانبر تر خواهد بود. از این رو استفاده از روش های تئوری مختلف نظیر محاسبات نرم به منظور پیش بینی مقاومت برشی خاک غیراشباع بسیار کاربردی و مفید خواهد بود. در این پژوهش قابلیت سیستم استنتاج فازی- عصبی انطباقی (anfis) و دو نوع شبکه عصبی مصنوعی (mlp , rbf) به منظور تخمین مقاومت برشی خاک غیراشباع بررسی گردید. تحقیق حاضر از دو مرحله تشکیل شده است. در مرحله اول از 128 سری داده استفاده شده است، به صورتی که چهار پارامتر تنش نرمال خالص، ماتریس مکش، زاویه اصطکاک داخلی موثر و چسبندگی موثر به عنوان پارامترهای ورودی و مقاومت برشی غیراشباع به عنوان پارامتر خروجی تعیین گردیدند. در مرحله دوم از 118 سری داده با 8 پارامتر ورودی که شامل تنش نرمال خالص، ماتریس مکش، زاویه اصطکاک داخلی موثر، چسبندگی موثر، نسبت تخلخل، دانسیته خشک، چگالی مخصوص و درجه اشباع می باشد، مقاومت برشی خاک غیراشباع پیش بینی گردید. به منظور مقایسه نتایج حاصل از anfis و شبکه عصبی، ازشاخص های ارزیابی ضریب تعیین (r2)، ریشه میانگین مربعات خطا (rmse) ، میانگین خطای مطلق (mae) و واریانس (vaf) استفاده گردید. نتایج نشان داد که مدل های ارائه شده توسط anfis و شبکه های عصبی مصنوعی (mlp , rbf) به خوبی قادر به پیش بینی مقاومت برشی خاک غیراشباع بوده و تا حدودی mlp نسبت به anfis و rbf عملکرد بهتری داشته است. در مرحله اول، مقدار ضریب تعیین برای شبکه mlp برای داده های آموزش و آزمایش به ترتیب 98/0 و 989/0 و در مرحله دوم به ترتیب 996/0 و 988/0 می باشد که نسبت به دو مدل دیگر بهتر می باشد. همچنین به منظور تعیین سهم هر کدام از پارامترهای ورودی در پیش بینی مقاومت برشی خاک غیراشباع، آنالیز حساسیت انجام گردید. نتایج نشان داد که gs تاثیر نسبتا بیشتری بر روی مقاومت برشی خاک غیراشباع دارد.
similar resources
پیش بینی مقاومت برشی خاک های غیراشباع در حالت کرنش صفحه یی با استفاده از روش شبکه ی عصبی مصنوعی
با توجه به هزینه ی زیاد و زمان بر بودنِ انجام آزمایش های برش مستقیم یا سه محوری روی خاک های غیراشباع، معمولاً پارامترهای مقاومت برشیِ لازم در کاربردهای عملی، با استفاده از روابط تجربی موجود پیش بینی می شوند. اما تحقیقات جدید حاکی از آن است که هیچ یک از روش های تجربی ارائه شده در ادبیات مکانیک خاک های غیراشباع تواناییِ پیش بینی مقاومت برشی همه ی انواع خاک ها را ندارند. در این نوشتار، با استفاده از ن...
full textپیش بینی بلند مدت رواناب با استفاده از شبکه های عصبی مصنوعی و سیستم استنتاج فازی
مدلهای مفهومی بر مبنای هوش مصنوعی، اغلب برای پیش بینیهای کوتاه مدت و میان مدت هیدورلوژیکی به کار رفته اند. در این مقاله با استفاده از مفهوم تولید مجموعه ای از پیش بینی ها1 (esp) و تفکیک مدلسازی برای متغیرهای اقلیمی و هیدرولوژیکی، از مدلهای مفهومی برای پیش بینی بلندمدت حجم جریان رودخانه زاینده رود در محل ورودی به سد زاینده رود استفاده می شود. سیستم استنتاج فازی برای پیش بینی بارش فصلی به صور...
full textپیشبینی بلند مدت رواناب با استفاده از شبکه های عصبی مصنوعی و سیستم استنتاج فازی
مدلهای مفهومی بر مبنای هوش مصنوعی، اغلب برای پیشبینیهای کوتاه مدت و میان مدت هیدورلوژیکی به کار رفته اند. در این مقاله با استفاده از مفهوم تولید مجموعه ای از پیشبینیها1 (ESP) و تفکیک مدلسازی برای متغیرهای اقلیمیو هیدرولوژیکی، از مدلهای مفهومی برای پیشبینی بلندمدت حجم جریان رودخانه زاینده رود در محل ورودی به سد زاینده رود استفاده میشود. سیستم استنتاج فازی برای پیشبینی بار...
full textمقایسه توانایی پیش بینی مدل های شبکه عصبی مصنوعی (ANN)، سیستم استنتاج عصبی- فازی انطباقی(ANFIS) و تبدیل موجک-عصبی: قیمت سبد نفت خام اوپک
پیش بینی قیمت نفت خام از مهم ترین موضوعات فرا روی اقتصاد انرژی است. پیش بینی مناسب قیمت نفت و آن هم قیمت نفت خام اوپک، به دلیل درگیر بودن تعدادی از کشورهای در حال توسعه این سازمان با قیمت نفت، می تواند در برنامه ریزی های سازمان و کشورهای عضو آن، اهمیت ویژه ای داشته باشد. برآورد و پیش بینی روند قیمت نفت، به خاطر نبود داده های تاریخی مهم و محدودیت اطلاعات مرتبط با شاخص های موثر بر روند قیمت نفت، ...
full textپیش بینی فشار در شبکه های آبرسانی با استفاده از شبکه های عصبی مصنوعی و استنتاج فازی
فشار نقاط مصرف در شبکه های آب رسانی یکی از مهم ترین پارامترهای هیدرولیکی است که می تواند در مدیریت بهینه شبکه های توزیع آب مورد استفاده قرار گیرد. از آن جایی که فشار، اثرات متفاوتی بر پارامترهای مختلف مدیریت شبکه، همچون عملکرد هیدرولیکی، قابلیت اطمینان، پایداری شبکه و نشت دارد، لذا شناسایی روند تغییرات و تعیین میزان آن از اهمیت بسیاری در سطوح مختلف مدیریتی برخوردار است. بخش قابل توجهی از آب ورو...
full textمقایسه کاربرد شبکه عصبی مصنوعی (ANN) با سیستم استنتاج فازی (FIS) در پیش بینی جریان رودخانه زاینده رود
یکی از روشهای نو ظهور در حل مسایل مهندسی جهت مدلسازی سیستمهایی که دارای پیچیدگی زیاد یا عدمصراحت بوده و یا دادههای کافی از آنها موجود نیست، استفاده از تئوری مجموعههای فازی و شبکه عصبی مصنوعی میباشد. مزیت اصلی این تکنیکها نسبت به روشهای رایج این است که در مدت زمان نسبتاً کوتاهی قادر به بررسی تأثیر انواع پارامترهای در دسترس، بر فرآیند مورد بررسی میباشند بدون آنکه در هر مرتبه نیاز به یافتن...
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی صنعتی کرمان - دانشکده عمران
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023